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ABSTRACT

. n _ n
In this paper we study [T]m = zkzr(modm) (k) where m >0, n 2 0
and r are integers. We show that [’T’] m {m > 2) can be expressed in terms
of some linearly recurrent sequences with orders not exceeding (m)/2.

In particular, we determine [ﬂ explicitly in terms of first order and

12
second order recurrences. It follows that for any prime p > 3 we have

or—1 1 (—1)F
—_— — =9(—1 (p~1)/2
» (-1) E Y] {mod p)
1R (p+1)/6

and

Z i; Z -(_—I:)—k(modp).

0<k<p/2 0<k<p/6

1. Introduction

Let N={0,1,2,...} and 27 = {1,2,3,...}. Forme Z*, ne€ Nand r € Z, we
set

Gl B () e § ()

k=0 k=0
k=r (modm) k=r (mod m)
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It is interesting to determine these two kinds of sums, which are closely related
to various number-theoretic quotients (see [W], [SS], [S1-3] and [Sul)), values
of Bernoulli and Euler polynomials at rational points (cf. [GS] and [Su3]), S.
Jakubec’s investigation ([J]) of divisibility of the class number of a real cyclo-
tomic field of prime degree, and C. Helou’s study of Terjanian’s conjecture con-
cerning Hilbert’s norm residue symbol and cyclotomic units (see Proposition 2
and Lemma 3 of [H]). Observe that

L v =2

Also,

I e P I e M 4 IS PR

So, it suffices to determine [:‘]m with n odd. If n > 0 then

" {SC{L...n}:|S|=r (modm)}| and [P] =Z["] =2
7T 1m 2 2titrii

For explicit formulas of [7]
[SS].

Throughout this paper, for a real number z we use |z| and {z} to denote the
integral and fractional parts of z, respectively. For a,b € Z, as usual (a, b) stands

and [7],,, the reader may consult [S2], [Sul] and

8 10’

for the greatest common divisor of @ and b. When a € Z, n € Z* and (a,n) = 1,
(2) denotes the Jacobi symbol if 2 { n; we write g, (a) for (a1 —1)/n, which is
often called a Fermat quotient if n is a prime p. For an assertion A we set
1 if 4 holds
1. 4={ )
(1.3) [4] 0 otherwise.

7], (m > 2) in terms of some linearly

recurrent sequences whose orders belong to {1} U {¢(d)/2: d | m & d > 2} where
v is Euler’s totient function. Namely, we have

Our first aim is to express the sum |

THEOREM 1: Let Do(x) = 2 and

In/2} .
(1.4) Dafa)= Y (-1)'—" (" , ’)MH forn € Z*.

n-—1 )
i=0

Let k,m € Z and m > 2. Write

.Tr .Tr n
(1.5) wn(k,m) = Z Dk (4 cos? %—n—) (4 cos? %) forn € Z,

o0<j<m/2
(j.m)=1
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and

A () = H ( 40052;)

(1‘6) 0<j<m/2

Gym)=1
=g (M2 _ g ge(m)/2-1 _

T T Gp(m)/2-1% T By(m)/2-
Then (—1)*"ta, € ZT for s =1,...,p(m)/2, and
(1.7)  wa(k,m) = arwn_1(k,m) + - + p(m)/2Wn—p(m)/2(k,m) forn € Z.

Whenever n € N and r € Z, we have

(1.8) [n]m _ 2"+ (=12 | m & n = 0] n %ZWL"T“J("_ or, d).

r m

d|m
d>2

Applying Theorem 1 with m = 4 we find that

4[3]4 - = w(n+1)/2(n74) = (_1)(n2-1)/82(n+1)/2 forn = 1,3, 57 L)

consequently
2
(—1)(7”2“1)/8 <—> = 2[3]4 —2P"1 =1 (modp) for any odd prime p.
p

This provides a new way to determine the quadratic character of 2 modulo an
odd prime. (The author’s brother Z.-H. Sun [S1] employed [?] , and [B] to obtain
2y — (_1)P*-1)/8
(2) = (-1 -Drs,
Let m > 2 be an integer and p > 2 be a prime not dividing m. From Theorem
1 we can deduce the following congruence:
(1.9)
Wipr2(p,m) = (p(m) + plm)) _ Z X ulm/(k, m)) (~1)F
P - o(m/(k,m)) k

(mod p)

where p denotes the well-known Mobius function.
Our second goal is to obtain an explicit formula for the sum ['T'] 1o+ This involves
a special Lucas sequence {Sy, }nez and its companion {T}, }cz defined as follows:

So=0, S1=1and Sn+1+Sn_1 =48, forn=0,+£1,42,...;

(1.10)
To=2, T =4and Tpy1 + T,y = 4T, forn=0,+1,+£2,....

It is easy to check that T,, = 4S,, — 25,_1 and 6S, = 2T,, ~ T,,_1 for all n € Z.
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THEOREM 2: Letn € Z%, 2t n and r € Z. Then
(1.11)

12["] —on
rJi2

r(n r{n—r)

(-T2 )( H 4 Tag) ifn~2r=+1 (mod12),
={ 34+ (1))@ ~ Tuga +Tasa) ifn—2r = £3 (mod12),
=3 4 (- ()@ F - Tan) ifn —2r = +5 (mod 12).

The author obtained Theorem 2 in 1988; it has the following application.

THEOREM 3: Let n be a positive integer with (6,n) = 1. Set i = (n — (2))/2.
Then

o (2)% D7 ¥ e (B72)+ COT (n-1),

n 3 = k—1\6k—4 p k k-1
8lk+n
For any prime p > 3, we have the congruences
p-1
- —1)k 2\ S;
(1.13) F Z ( k) =-6 (—) £ — ,(2) (modp)
k=1 0<k<p/6 b/ P
and
vz S (1)
— -1
(114) 0(2) = 2=/ 3 L (mody)

Let p > 3 be a prime. The first congruence in (1.13) was announced by the
author [Sul] in 1995. (1.14) provides a quick way to compute ¢,(2) modp. In
Section 3 we will determine EO<|k<p % mod p explicitly where r € Z.

12|k—T

We will show Theorems 1 and 2 in the next section. Section 3 contains a proof
of Theorem 3 and other applications of Theorems 1 and 2.

2. Proofs of Theorems 1 and 2
Let me€ Z*, n € Nand a,r € Z. Then

= (e-ElE T b e

0gkgn ym=1 'y"‘ 1
k=r (modm)
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This is (1.53) of H. W. Gould [G]. If p is a prime not dividing m, then we have

(2.1) 3 (pkf‘) a* 3 (Z) a* (modp)

o<k pn 0gkgn
k=pr (modm) k=r (modm)

(and in particular [Z :] = [7:] (modp) as observed by A. Granville) because
m m
Z’y P14 ay)P" = Y1+ aPAP)" = Zv (14 av)" (modp).
ym=1 ym=1

LEMMA 2.1: Let k€ Z, m € Z* and n € N. Then

(2.2) — Z FQ 4y 4y " = [szn]m
'ym 1

and

(23) 'rlﬁ Z ferver = {0

Proof: Let € € {1, -1}. Observe that

Yo EyTH = Y A AT TR

ym=¢ =€
2n
=) (LT = ZWH" <s>7
2n
M _ 2n xi ,e k4+n—s
() L e ( ) ¥ ()
s=0 s l1—¢ s = 1
yr=(-1)"2"
2’[7, l—¢ ktn—s s—k—n 2TL
= 2 (M y e (),
0gs<2n 0<s<2n
ml|k+n—s m|s—(k+n)

So (2.2) and (2.3) hold. |

Remark 2.1: Letk€Z,meZ*, neNandee€ {1,-1}. By Lemma 2.1,
YoAC-r=Y = Y (e
ym=e ym=(~1)"e

=(-1)*m x [€4nl, ife= (=D
{ " +n} otherwise.
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For n = 0,1,2,3,... the nth Chebyshev polynomial T,,(x) of the first kind is
defined by

cos(nf) = T, (cos ).

1t is known that if n € Z™ then

Rk . n (n—1 .
Tny1(x) = 22T, (2) — Tnu—1(z) and 2T, (z) = Z (—1)‘n — ( ; >(2$)n—2z.
1=0

Thus 2T, (z) = Dy, (4x%)(2z)" for any n € N.

Proof of Theorem I: Let y; = cos(jm/m) and z; = 4y;‘~’ for j € Z. As
T; —2=2co0s (Zw%) — g2mif, + e—zm;g,

the coeflicients of A, (z + 2) are symmetric polynomials in those primitive mth
roots of unity with integer coefficients. Since

D, (z) = H (:v - ez"i%) € Ziz],

1<i<m
(G,m)=1

we have A,,(z + 2) € Z[z] by the Fundamental Theorem on Symmetric Polyno-
mials, therefore A,,(z) € Z[z).
Let 1 < s < p(m)/2. By Viéte’s theorem

—Gs = Z H(_wjt)’

0<j1 <~ <jg<m/2 t=1
(j1-+ds,m)=1

therefore

8

0 < (~1)*ta, < (cp(m)/2> 4.

For any integer n we clearly have

w(m)/2 . o(m)/2 ‘
Z a; Z D]kl (.’Ej):l:?_z = Z lel (:EJ) Z G,i:ZJ?_z
i=1 0<j<m/2 0<j<m/2 i=1
(j,m)=1 (j.m)=1
- 2
= S Dy () el (x;gon)/ — A, (;c,-)) = Y Dule)el
o<i<m/2 0<j<m/2
(G,m)=1 (j,m)=1

So (1.7) follows.
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For each k € N, if 2 | k then Dy (4z?) = 2Tx(x); if 21 k then

_ 2Tk(.’IJ) _ Tk_l(ﬂ?) + Tk+1($)
2z 222

Dy (42?)

Let n € Nand r € Z. Then

12
S wpag =2 d) =Y Y Dy (405 ) (40 )
d|m d|m 0<c<d/2
d>2 (c.d)=1
L=5)
= Z Dip—2r|(25)T;
0<j<m/2
If 2| n, then
Z wl%lJ (n —2r, d) = Z 2T|n~2r|(yj)$?/2
Z|>n; 0<j<m/2
_ Z (em%(n—w) +e—wiaml(n—2r)) (2+62m';% _}_e_z,ri%)n/z
0<j<m/2
_ Z ,yn/z—r(2 +’Y+7_1)n/2 LY, (_1)"/2—7‘[2 | m & n/2 =0
=1
_m[n~r]m 2 (—1)7[2 | m & n = 0]

n

of:

]m—Z"—(—l)T[2|m&n:O].

When 2 { n, we have

A

Tn——Zr— (y')+T'n—r (y) L
ZwL”T“J(n_2T’d): Z l |-1{Y; In—2r|+1885) =5

2y2-
djm ] J
d|>2 0<j<m/2

: . i
= Z (2cos(n —2r — 1)ﬂ +2cos(n — 2r + l)ﬂ) z;7
m

0<j<m/2 m
= 2 (7”—5—1—" + V"TH—T) Q+y+y T —(1+1)4"5
ym=1

:m[ n—1 ] +m[n—1] _ogn
n—1—rlm n—7rlm

m[ n ] —2":m[n] — 2™,
n—r1lm Tlilm

This ends the proof. |
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Remark 2.2: For any integer m > 2, clearly

Ap (1+2)Q+27Y)) = An2+z+ 271
_ H ($+$~1 _2mid _ e—zm‘J"’T)

0<j<m/2
(j,m)=1
1 i —opid P, (x
— H —(117—627”"')(.’17—6 21rzm): m()
T pe(m)/2
0<j<m/2

(Jym)=1

Now we list A, (z) for 2 < m < 12:

As(z) =3 —1, Ay(z) =1 -2, As(z) = 2% -3z +1,

As(z) =2 -3, A7(z) = 2% — 52% + 62 — 1, Ag(z) = 2% — 4o + 2,
Ag(z) = 23 — 622 492 — 1, Aso(z) = 2% — 52+ 5,

An(z) = 2° — 97 + 2823 — 3527 + 152 — 1, Apa(a) =22 — 4z + 1.

Let m,n € Z and m > 2. Clearly w,(0,m) = 2w,(1,m) since Dy(z) =
2D;(z) = 2. For k,l € Z we have

(2.4) wn(k,m) = w,(l,m) if k ==+l (mod2m),
and
(2.5) wy{m — k,m) = —wn(k,m) if m =0 (mod2).

(Thus wn,(m/2,m) = 0 when m is even.) This is because

. .\ [2tk] . :
Dy (4 cos? E) <2 cos E) = 2T} (cos E) = 2cos (]—kﬂ) .
m m m m

When m € {5,8,10,12} (i.e., ¢(m)/2 = 2) we will express wy,(k,m) (k,n € Z)
in terms of several second order recurrences of integers, namely the Fibonacci
sequence {Fy,}nez and its companion {Ly},ez, the Pell sequence {P,}ncz and
its companion {Qy, }nez, and the sequence {Sp}nez and its companion {7, },ez
given by (1.10). The sequences {Fy, }nez, {Ln}nez, {Pa}nez, {@n}nez are defined
as follows:

FO = 0, F1 = 1, Fn+1 =F,+ Fn,-l (n = 0, ﬂ:l,ﬂ:?, .. .);
Lg = 2, L1 = 1, Ln+1 = Ln + Ln—l (Tl = 0, :tl,:l:?, . .);
Py=0, Py=1, Pay1 =2P, + Po_y (n=0,£1,£2,...);
QO = 2, Ql = 2, Qn+1 = ZQn + Qn—l (n = 0, :l:l, :t2, .. )

(2.6)
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It is easy to check that for each n € Z we have

Fo 75((”/5>n— (57)) - (57) + (57)
((1+f) —(1=VE"), Qu=(+VE+ (1= VD)
(@+vB)" - @-V3)"), Tu=(E+Va"+2-VA)"

s\

o= —
n 2\/5

For those m € Z* with ¢(m) = 2 or 4, we give below values of w, (k, m) (n € Z)
where 1l <k < mif2{m,and 0 < k < m/2 if 2 | m. They can be obtained
through trivial computations.

wnp(1,3) =1, we(2,3) = -1, w,(3,3) = -

we(1,4) = 2™ we(1,6) = w,(2,6) = 3™.

wr(1,5) = Loy, wn(2,5) = Lap—1, wn(3,5) = —Lo,_a,
wn(4,5) = —Lont1, wn(5,5) = —2Lon_1.

wy (1, 8) wn(2,8) wn(3,8) | wx(1,10) wr{2,10)
24n 2nt3)/2p 1 on+)/2¢y | o(nt3)/2p | | 5(ntl)/2 5’,(71+1)/2F7H_1

2 | n 2n/2Qn 2(n+4)/2pn 2n/2Qn—1 5n/2Ln 5n/2Ln+1

5(n+l)/2p 1 if 24n,
n— .

wn(1,12) = wp(4,12) = Ty, w,(2,12) = 685,
wn(3,12) =68, — T, =2(Sp + Sn-1) =T — Ty, wn(5,12) =T, 4.
Proof of Theorem 2: Let k =n — 2r. By Theorem 1,

12[ ] Zw (k,d) = by, + cx

d|12
d>2

where
by = wags (K, 3) + wapa (K, 6) and Ck:wnTH(k,4)+WRTH(k,12).

Observe that

n+1

bi =143, by= =2, by = wan (1,3) — waps (1,6) = 1 - 3°F
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Also,

c1=2"72 +TnT+1,

c3 = —Wag1 (1,4) + wap (3,12) = _9" + Tagt — Taza,
il
2

s = _’wﬂ_-zﬁ(].,4)+1UE%—_1(5712) =-2 : +T"T_1'

Let I be the unique integer in {1, 3,5} such that k is congruent to ! or —I
modulo 12. Then by = b; by (2.4). If k = £l (mod 8), then k¥ = £/ (mod 24) and
hence ¢ = ¢; by (2.4). In the case k # =+l (mod 24), 12 — k = £l (mod 24) and
hence

—Ck = Wnt1 (4-k,4)+ U}nT-H(12 —k,12) = wn_;i(l,4) + 'U}nT+1(l, 12) = ¢.

Thus

2_;2 n2_12 r{n—7r
Ckz(—l)}c Bl C[Z(—l)—gl_—(—'ﬁ’lcl
and so 9
n r{n—7) 2_1
2" - =b+ ()T (2 ()T e
i v+ (=1) <n) )= a
Since we have computed b; and ¢;, (1.11) follows immediately. ]

3. Applications of Theorems 1 and 2
Theorem 1 implies the following result.

THEOREM 3.1: Let m,n € N, m > 2 and n > § where § € {0,1}. Then

2n—4 .
(1) wa(2k+dm)=p(m) Y ZE% EZ; = : - Z;; <2nj— 5)

for all k € Z. If p is a prime not dividing 2m, then (1.9) holds.

Proof: Let k be any integer. By Theorem 1,

’[21?4:7:5]; _ gm0 _ (L1)¥4n[2 |1 & 2n = 0]
= wamoin (20— §—2k—2n,d) = Y wa(2k+0,d)
& iz

foralll =1,2,3,.... Applying the Mébius theorem we then get that

wa(2k +6,m) = > p (%) (d[2kn_;f]d _ 928 _ (L)HH[2 | d & 2n = 5]).
dlm
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As m > 2, we have 3, u(f) =0 and

my 3 u(PE) =0 if2|m,
Z"(d)*{o /o if 24 m.

Therefore
m n -4 m 3l om—§
wekrim =Su(F)7 L] = Se()e B (7))
m m a5 o)
2n—§ o~ §
_Z( )Zp( ) [d|j—k—nl.

dm
For the equality (3.1), it remains to show that for any ¢ € Z we have
p(m/(c,m))
I = p(m) ———=.
> () e o(m/(e,m))

This can be verified directly when m is a prime power, also both sides are
multiplicative with respect to m. So (3.1) holds.
When n is prime to 2m, we have

v (22 ) —em S EER—E (0)

kogom/(mk ol _ ng

ol S = B) (o S p(m (km) (n
= 2 ot ) (n—k) 4 )k Ow(m/(k,m) (k)

o (Al Sl 1)

(m/(k,m k
=p(m) + p(m) + np(m Z#Z§::)) i(::i)

If p is a prime with p  2m, then (1.9) follows from the above since
((p—1 Py _ 1 2
D", =] (1-%)=1-2 ) = (modp?)
ocgt v Y o<i<t?
forany [ =0,1,2,...,p~ 1. We are done. 1

As examples we apply Theorem 3.1 and Theorem 1 with m = 4, 5.
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COROLLARY 3.1: Let n be a positive odd integer. Then

b IR R o) (o

=1 k=1
2|k 2tk
and
“lifn—1 tn=n ( 1)"2{1 o1
3.3) 2 = =g (2) + (~1) 7 = — - f Z.
53 23 ;(4)) =s@+ %™ - orr €

4|k—r

Proof: Qbserve that

7.Un_-2f-_l(n’4) = a1

wapr (1,4) =2 ifn =41 (mod8),
w%’-(3’4)_ -272  if n = %3 (mod8).

Thus, by the proof of Theorem 3.1, we have

(1) =27 -1 wap(n4) —v(4) - u(4)

. n np(4)
;%(n—lyw j{( 13 (n—l)
-5 () -G

2k o

This proves (3.2). Clearly
n-1 n-1 n-—1
1 n 1 n 1(n-1
= — = —_ Z’
") = 2nz(k) n 2 <k) 2 k(k—l) forr€Z;
this and (3.2) yield (3.3). 1

COROLLARY 3.2: Let n be a positive integer not divisible by 2 or 5, and
n—1
1/n-1
K,(r)= Z E(k—l) forr e Z.

Then

(3.4) ";
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=r (modm)
and

5 _
Gk (0) 4+ LKa(3)~ 1Kald) - 22

Proof: By Theorem 1, for any r € Z we have

(3.5)

Lnsi  ifn—2r = +1 (mod10),
5["} 9" —wap(n—2r,5)={ —L,_1 ifn—2r=+3 (mod10),
ros ’ —2L, ifn—2r =45 (mod10).

As 51’7‘J = 2Lj+1 - Lj = LJ' + 2Lj_1 for j € Z, 5Fn—(%) =2L, — (%)Ln—(%) and
hence

Fn_(%)z[i;] [?Zl] g([mk 4n] - [5|k—3n])%<::i).

So (3.4) follows.
Observe that

) = Ln+1 = 3Fn + Fn—l ifn=4=1 (mod 10),
y=—Ln_1=-3F, + Fpy1 if n =3 (mod10).

Thus, by the proof of Theorem 3.1, we have

L6 )BT

1+1)" -2

=4Kn(0) - (Kn(l) + Kn(2) + Kn(3) + Kn(4)) = 5Kn(0) - n

This, together with (3.4), yields (3.5). |

Remark 3.1:  Let p be an odd prime. Various congruences for F,_ s, /p mod p
P
can be found in [W], [SS] and [{S3]. In 1995 the author [Sul] showed that

-1 3
r;_ Lir] (—1)k-1 (=1)*
-27 £ = Z = Z = 2¢,(2) + Z - (mod p),
k=1 k=1 0<k<p/4

which was reproved by Z. Shan and Edward T. H. Wang [SW], and extended by
W. Kohnen [K]. Therefore 2(2P~2/2P, —1)/p = 3o 4, /a(~1)F"*/k (mod p).
As

(2)‘917 2 )_4(17)P ~Qp=4-(1+V2+(1-v2)) =2 (modp),

p
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Q; @) 4—8P @ = 0 (mod p?) and hence
2 2 2
Thus
Py _P-1 _ 3 (—D*1 42
p P - 2k 2
0<k<p/4
(3.6) . (1)
=3 Z (modp)
plfa<k<p/2

Theorem 2 has the following consequence.

THEOREM 3.2: Let n be a positive odd integer. Then

(37) [”]6=2"*;'1+[3*"+” ()32 41) forrez

r

Providing n # 3 (inod 6) we have

e L B S )

k=1

Proof: As
21 =[Pt [ng), ane £EREor=9_rles

(3.7) follows from Theorem 2.
Now assume that (6,n) = 1. Clearly

L3/:"”(—1)’6 n—1 'ill n—1 _'iil n—1
2o 3k \3k-1 k\E-1) 7 2 B\k-1

k=1

) =1 (mod?2),

61k 8|k—3
2[3]6_1—[2]6: (-t — (—pl=* 6+1J3nT—1_l= (%)3"—51‘_1
n 2n n n
and

n-1 k+1 1 n—1 n—1
(s dm—1y _ 1({n 1/(n

20002 (550)- % 50)

B B 8lk—r 6lk—r—3

N P 6T +[6(n—7]
zrg—:l ) n ) _T:Z—I n

n n
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mod m)

This completes the proof. 1

Remark 3.2: For n € Z*t and r € Z, mm in the cases m = 4,5,6 was also
determined by the author’s brother Z.-H. Sun [S1] but he did not present unified
formulas like (3.3) and (3.7).

From Theorem 2 we can also deduce the following result written in number-
theoretic language.

THEOREM 3.3: Let n be a positive integer prime to 6. Set i = (n— (2))/2. For
any r € Z we have

S ey )29 o
=" k k—1 n 3n
(3.9) =r (mod6
_nlo _ U e\ Ta-2(8) .
R e S O LR
(2% - () EEE if3Intr.

Proof: Let 6, =[6|r]+[6]|n—r]=[n—2r =+n (mod12)], and

e B o) ()6 ()

k=r (mod86)

Then

2 ntl _ L k(nz—k) ny r=r) (N
a+ (3) 2 —2ens =0 30 (0 (3) o0 {1,

6|lk—r
where in the last step we note that

En—k) rin-r) k-r E2-r*_ k-r
T R R (mod?2)

if K = r (mod6). In view of the above and Theorem 2,

(%) A, + (66, — 2) <%) 6(—1)"52 (%) ([:’]12 - ['r’j—ﬁ]u) — o™

TnTl if n —2r = £1 (mod 12),
= Toos —Topy ifn—2r=43 (mod 12),
—Tns if n—2r = 45 (mod12).

Observe that

6Snt1 —Tpys =Tays —Tpoy =3Tno1r —Thnos =681 + Taor.
Z 2 2 3 z 7 Z

2
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If n — 2r = +1 (mod 12), then &, = [n = 1 (mod 12)], therefore

(2)sr ()

65acs +2Tacs — 4(2) if (
") Tap +2(2) if (

3
=3(1+(2))sn+ 3 ) (z-2(2)).
n 2 n
If n — 2r = £3 (mod12) (i.e., 3 | n +7), then §, = [n = +3 (mod12)] = 0 and
hence
(3> Ay =Tas —Tass + (2 — 66,) (3)
n B p n

2 2
= - GSn—l - Tn—l + 2 (_) = _6Sn_+1 + Tn_+1 + 2 (—)
2 Z n 2 2 n

—-os- () (-2 (2).

If n — 2r = £5 (mod 12), then 6, = [n = £5 (mod 12)] and so

(2) 8=t 2080 ()

~Tas +2(3) if (2
T | 6Sap — 2Tap — 4(2) if (2

2 @) R (er(2)

When 3 {n — 2r, we have

(5= {7}

(otherwise 6 | n + 1 and 3 | » — 1, which implies that 3 | n — 2r), thus

P [ e 2

and hence

_ I.T+_1 § gy =2 — 1 fn—-2r=41 (m0d12),
(=1 (n ==t -1 ifn—2r=+5 (mod12).

In view of the above, (3.9) can be easily verified. |
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Proof of Theorem 3: Applying (3.9) with » = 3, —n we obtain that

k(n k)

ED (2 ) =gl k+n)

>“ ()20 ()

Qd /'\HM‘

If k = 3 (mod6) then
kn—k) n-k _n-1 k+3
= = - 2);
2 2 2 g (mod2)
if k= ~n (mod6) then
kn—-k) _k+n k+n
= -k= d2).
2 2 6 (1mod2)

Thus (1.12) follows.

Now suppose that p is a prime greater than 3. Applying (3.9) with r = 3, we
find that p divides T — 2(%). Observe that

1253 = (24 VB + 2~ VBP) - 42+ VB2 - VB

am () 1 (9 (-(9)

Sop| Sp and p? | T — 2(2).
Notice that

65@3 _T%i 265172;1 +T’§-l =655 + <§) T3
Y4

2\/_(2+\f) —(2- V3T ) + 2+ VYT +(2- V3T

=(1+V3)2+ V)T + (1 - v3)(2—-V3)'T
=2 (14 VBRI 4 (1 VB

=53 (B (3 + (V)

k=0
21k

p-1

- 1 23 p—1
=2.27%% 4o py T :
2207 2 gy

k=1
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Therefore

#2502

Taking » = 0,3 in (3.9) we then have

A0 06

0<k<p/6

and

S ) () T - ()2

Consequently,

—1)* _
5 ¥ S -te@=(2) % weap

0<k<p/6

and (1.14) holds. This completes the proof. |

Remark 3.3: Let p > 3 be a prime and § = (p — (%))/2 By the proof of
Theorem 3,

(552 a(3)'- (2522 =2(3)’

Since 2S,;_1 =4Sp-;—_1 “Th;l and 25% = 85,;_1 - 25%3 = 4595_1 +T,;_1,
Swranre—(3) s, (3) Tp - 2(2)
LAY LA S, Tos NI il INLANY 4
p p p 2p
As S, —(3 y = S2p = 5515, we have

6
S _, (9) S5 =26 o, (9) (.S_ﬁfpz (mod o).
) p) p p p? p/\p

S.
=272 (modp).
» (mod p)
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Note also that

because S, = SZ+1 - 5241 =(3 )(S(Zp+ 82~ §2) = (H((3) +255)* (modp?).
In [SS] Z.-H. Sun and Z -W. Sun employed the sum [?]_ to determine when
p | Fp_1)/4 if p is a prime with p = 1 (mod 4).
Let p > 3 be a prime. We assert that

(3.10) p| SLLFJ <= p=1,19 (mod24); p | Tiegr) <= p=T7,13 (mod 24).

Put n = (23], Clearly
T = (@4 V3" ~ @2~ V3)") +2(2+ V)" (2~ VB = 1252 + 2.

It p = 5,11 (mod12), then p + (%) = 4n, hence p 1 S, and p + T, because
SuTrn = Sop = (%) (modp) by Remark 3.3. When p = 1,7 (mod 12), clearly
4n=p— (—;3) = 2p, therefore

p| Sy < T; =1252 + 2 =2 (modp), i.e.,p|2(g> —2

2
— <_) = (;) , i.e,, p=1,19 (mod 24),

p

and

T, = S55/S, =0 (modp) < ptS, < p=17,13 (mmod 24)
since Sy = 0 (modp) and T2 — 1252 = 4 # 0 (mod p).

COROLLARY 3.3: Let p > 3 be a prime. Let r € Z,

1 ifr=0,1 (mod6),
(3.11) Kp(r,12)= Y k and e =< ~1 if3|r+1,
ock<p 0  otherwise.
Then

2+ (—-1)lr/2
12

2 é(P*(i))/z
+ Ep _1 LT/2J <_> — P mod .
(-1) 2 ( p)

(1) Ky(r,12) = 9(2) + 317+ 1](~1)L’“/3Jq—”f—)

(3.12)
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Proof: By Theorem 3.2,

ol +61p-r+p 3 (17 1)

gﬁﬁsp
[p1 _'-1  [3{p+rp] _qylE=ZeElyap=t
=[le= T T (s ).

Since (P;') = (~1)! (modp) for 1 =0,1,...,p—1, and

o= (57 ()5 2 (3) 7

p p p

for any integer a # 0 (mod p), we have

) (“D* a(2)

0<k<p k 3

6lk—rp
E%ﬂ ((_1)LP+—15‘2£EJ32”5‘1 +1-2[r=0,1 (mod6)]>
E[_?’)(_;pi_ll(_l)ﬁl ((_1)L'%LJ3P‘§—1 - 1) =[31r +1)(-1)!5! ‘l_pi_?’l (mod p).

Set p=(p— (%))/2 As T = 2(%) (mod p?), Theorem 3.3 implies that

k(p—k)

(-1)~® 1 9(2)
2 F VT
6lk—rp
_ N
= (12_)) %(i;_)___[?ﬂfr +1]-[3)r+ 1]) (mod p).

Clearly || = |Z] (mod2) if 317 +1, so
1+ (~1)L%2)
2
If k = rp (mmod 6), then

k(p—k) _k—rp rplp—rp) _k—rp T
- a2).
2 5 P 6 l2J (mod2)

Btr+1]—[3|r+1]= [2[ [gJ &3fr+1]—[3|r+1]=e,.

I
il

Thus

2(—1)”)—1Kp(7‘, 12) = Z _(;—%k:i (1 + (_1)[§J+M)

0<k<p
Blk—rp

q,,§2) +[3 47+ 1)(~1)L! -ql’g’—) + (-1t (ggéZ_) +er (%)

il
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which is equivalent to (3.12). ]

Remark 3.4: Let p > 3 be a prime and r be an integer. Clearly

1 12 i, 12
E = E = = =12K,(-r,12) (m: .
- l s k rp P( T, 1 ) ( Odp)

- +1 <I<(r+1
Hr<i<SEp R

12|k+rp

Thus, for a = 1,5,7,11 we can also deduce the congruence

a 3\ 3 3
B, (ﬁ) - By, = (;) ESp—(%) +3¢,(2) + Eqp(?)) (mod p)

given in [GS] from our Corollary 3.3, where B,_1 = Bp_1(0), and B,_q(z) de-
notes the Bernoulli polynomial of degree p — 1. 1If 0 < r < 12 then we can
determine (L”L— ; J) mod p? since

12

|.12J lIIlO 2.
i) e 5

The reader may consult [Su2] for [[ .., /2 (Lp; plj) mod p? where n is any positive
integer not divisible by p.

ACKNOWLEDGEMENT: The author is indebted to the referee for his helpful
comments.
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